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Abstract Weak reversibility is a crucial structural property of chemical reaction net-
works (CRNs) with mass action kinetics, because it has major implications related to
the existence, uniqueness and stability of equilibrium points and to the boundedness of
solutions. In this paper, we present two new algorithms to find dynamically equivalent
weakly reversible realizations of a given CRN. They are based on linear programming
and thus have polynomial time-complexity. Hence, these algorithms can deal with
large-scale biochemical reaction networks, too. Furthermore, one of the methods is
able to deal with linearly conjugate networks, too.
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1 Introduction

The analysis of the structural properties and dynamical behaviour of biologically
motivated kinetic systems is a quickly developing field. While determining the exact
parameters in such a network can be difficult due to the complexity of the described
system or imperfect data, it is known that there are several important properties that
only depend on the structure of the model. Moreover, the reaction graph structure cor-
responding to a given kinetic dynamics is generally non-unique. These facts motivate
us to construct algorithms that can compute kinetic systems with preferred structures
(e.g. weakly reversible, minimal or maximal number of reactions, etc) that may provide
useful information about the dynamical behaviour of the system.

By chemical reaction networks (CRNs), we mean deterministic kinetic systems
obeying the mass action law. Being smooth nonlinear systems, all important qualitative
phenomena in nonlinear dynamics (such as stable/unstable equilibria, limit cycles or
even chaos) may appear in their dynamical behaviour [1,2]. This kinetic system form is
widely used to describe nonnegative models in the fields of (bio)chemistry, population
and epidemic dynamics and economy as well [3,4].

The phenomena of macro-equivalence or dynamical equivalence [5] describes the
fact that several reaction networks having different structure and/or parameters can
produce the same dynamical behaviour. Computation of dynamically equivalent struc-
tures with certain properties is detailed in [6–9] where a mixed integer linear program-
ming (MILP)-based solution framework has been proposed. The solution of an MILP
problem is generally NP-hard. Hence, solving such optimization problems can be
computationally very expensive which seriously limits the size of the treatable net-
works. One may overcome this problem by tracing back the original MILP problem to
simple linear programming (LP), if possible. This approach is followed in [10], where
LP-based methods are presented to compute dynamically equivalent realizations con-
taining minimal and maximal number of reactions.

Roughly speaking, weak reversibility means that all components of the reaction
graph are strongly connected components. This property has a crucial role in the the-
ory of CRNs, since it connects structural properties of the reaction graph to qualitative
features of the dynamical behaviour of the reaction network which is especially useful
in the deficiency zero and deficiency one cases. As it is formulated in the Deficiency
Zero Theorem [11] for a CRN having zero deficiency and a weakly reversible struc-
ture, there exists precisely one asymptotically stable equilibrium point in each stoi-
chiometric compatibility class. According to the Boundedness conjecture for which
no counterexamples have been found, the solutions of any weakly reversible CRN are
bounded. The conjecture was proved in [12] for the single linkage class case. More-
over, there exist important general results about the existence of equilibrium points in
weakly reversible reaction networks [13,14]. Several MILP-based algorithms dealing
with the computation of weakly reversible realizations of reaction networks were pre-
sented in [15–17]. However, these methods do not scale up very well with the size of
the network due to the integer variables in the optimization.

Linear conjugacy can be considered as an extension of dynamical equivalence where
a diagonal state transformation having strictly positive values is applied between the
solutions of linearly conjugate CRNs [18]. This means that the trajectories of the

123



1388 J Math Chem (2014) 52:1386–1404

networks can be related by a linear transformation. Two linearly conjugate networks
can have different deficiency values, therefore, linear conjugacy gives us additional
degrees of freedom to computationally find a reaction network having similar dynam-
ical behaviour than the original studied one, but with a more advantageous (smaller)
deficiency value. In [15,16] MILP-based methods are presented to compute weakly
reversible, linearly conjugate realizations. These methods are further developed in [17]
to be able to find weakly reversible linearly conjugate CRN structures with minimal
deficiency. Again, the computational complexity of the MILP problem often seriously
restricts the problem size if reasonable time limits are concerned. Therefore, the aim
of this paper is to present purely LP-based methods for computing dynamically equiv-
alent and linearly conjugate weakly reversible CRN structures that can cope with large
networks possibly containing several hundreds of complexes and reactions.

The structure of the paper is the following. In Sect. 2, the basic tools and notations
are described for modelling CRNs. In Sect. 3 the existing computational methods for
determining weakly reversible realizations are shortly reviewed and Sect. 4 contains
the detailed description of the new methods. In Sect. 5, the computational results cor-
responding to the proposed methods are presented, while Sect. 6 contains the summary
and conclusions of the work.

2 Basic concepts and notions related to CRNs

In this section, the structural and dynamical description of CRNs are introduced based
on [6–8]. Besides the notations, some important properties are also recalled related to
the scope of the current work.

2.1 Chemical reaction networks

The set S = {Xi , . . . , Xn} represents the n chemical species contained in a given
CRN. The concentrations of the species denoted by xi = [Xi ], i = 1, . . . , n form
the state vector x ∈ R

n of the system. The whole system obeys the mass action law
and, therefore, all the values of the states are nonnegative [3]. Chemical complexes
are formally represented as nonnegative linear combinations of the species:

C j =
n∑

i=1

αi, j Xi for j = 1, . . . ,m, (1)

where m is the number of the complexes in the network, and αi, j for i = 1, . . . , n, are
the nonnegative integer stoichiometric coefficients of the j th complex. An elementary
reaction step, where the source complex C j = ∑n

i=1 αi, j Xi is transformed into the
product complex Cl = ∑n

i=1 βi,l Xi is denoted by

C j → Cl (2)

The reaction rate corresponding to reaction (2) can be written according to the mass
action law as:
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ρ j,l(x) = k j,l

n∏

i=1

x
αi, j
i , (3)

where k j,l > 0 is the reaction rate coefficient.
If for any i �= l both reactions Ci → Cl and Cl → Ci are present in the network,

they are handled as separate elementary reactions. It is also required from the above
model class that Ci �= C j for i �= j, i, j = 1, . . . ,m, and self-reactions (i.e. loop
edges) of the form Ci → Ci are not allowed for i = 1, . . . ,m.

2.2 Graph representation

A CRN can be represented as a weighted, directed graph D = (Vd , Ed) consisting
of a finite nonempty set Vd of vertices and a finite set Ed containing ordered pairs of
distinct vertices called directed edges. The complexes are represented by the vertices,
i.e. Vd = {C1, . . .Cm}, and the edges stand for the reactions: (C j , Cl) ∈ Ed if complex
C j is transformed to Cl in one of the reactions in the network. The weight of the edge
(C j ,Cl) is the reaction rate coefficient k j,l . By the structure of a CRN we mean the
unweighted directed graph of the reaction network.

2.3 ODE-based description

From the several different possibilities, we will use the following factorization of the
right hand side of the kinetic ODEs describing the dynamics of the concentrations
(see, e.g. [6,19]):

ẋ = Y · Ak · ψ(x) (4)

where x ∈ R
n is the vector of specie concentrations. Y ∈ R

n×m is the complex
composition matrix in which the j th column contains the stoichiometric coefficients
of complex C j , i.e. Yi, j = αi, j . The vector mappingψ = [ψ1 . . . ψm]T ∈ R

n → R
m

is defined as:

ψ j (x) =
n∏

i=1

x
Yi, j
i , j = 1, . . . ,m (5)

Matrix Ak describes the reaction graph as follows:

[Ak]i, j =
{

k j,i , if i �= j and reaction C j → Ci is present in the CRN
0, if i �= j and C j → Ci is not present in the CRN

(6)

Moreover, the non-positive diagonal elements of Ak are given by

[Ak]i,i = −
m∑

l = 1
l �= i

[Ak]l,i . (7)
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Hence, Ak is a Metzler-type column conservation matrix (that is actually the negative
transpose of the Laplacian matrix of the reaction graph), often called the Kirchhoff
matrix of the CRN.

2.4 Dynamical equivalence and linear conjugacy of reaction networks

A set of polynomial ODEs is called kinetic, if it can be written in the form (4), where
Y contains pairwise different columns of nonnegative integers, Eq. (5) holds, and Ak

is a Kirchhoff matrix. Necessary and sufficient conditions of the kinetic property for
polynomial systems with a constructive proof were first given in [20] (see also [21]).
Let us introduce the matrix M for the monomial coefficients of the model (4), i.e.

M = Y · Ak . (8)

Using the above notation, (4) can be written as

ẋ = M · ψ(x). (9)

It is known that the factorization (8) is generally not unique (even if Y is fixed), there-
fore the CRNs defined by the pairs (Y (1), A(1)k ) and (Y (2), A(2)k ) are called dynamically
equivalent realizations of the kinetic system in Eq. (9) (or that of each other) if Y (i) are
valid complex composition matrices (a complex composition matrix is called valid if
it contains nonnegative integer elements and there are no identical columns in it), A(i)k
are Kirchhoff for i = 1, . . . , 2, and

Y (1) · A(1)k = Y (2) · A(2)k = M. (10)

It is known from the literature that the kinetic property of a system of ODEs is gen-
erally preserved up to the re-ordering and positive scaling of the state variables [22].
Therefore, in [18] the notion of linear conjugacy was introduced, where two CRNs
are called linearly conjugate if (in the case of appropriate initial conditions) there is a
positive linear diagonal mapping between the solutions of the corresponding kinetic
ODEs. Linear conjugacy is the extension of dynamical equivalence and it is also clear
that the qualitative properties of the solutions (number and stability of equilibrium
points, persistence/extinction of species, dimensions of invariant spaces etc.) of two
linearly conjugate CRNs are always the same.

2.5 Weak reversibility

The existence of a dynamically equivalent or linearly conjugate weakly reversible
CRN realization can be useful in the analysis of the qualitative dynamical properties
of the system [15]. From a graph-theoretic point of view, weak reversibility holds if
and only if all components (i.e. linkage classes) of the reaction graph are strongly
connected components (i.e. if there exists a directed path between nodes Ci and C j

then there exists a directed path from C j to Ci ). Additionally, it is known that a CRN
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with a Kirchhoff matrix Ak is weakly reversible if and only if there exists a strictly
positive vector in the kernel of Ak [15], i.e.

Ak · b = 0 (11)

b j > 0, j = 1, . . . ,m (12)

where b = [b1 . . . bm]T .
For simplicity, we introduce the following notions. A Kirchhoff matrix is called

weakly reversible if the corresponding reaction graph is weakly reversible. A vector
p ∈ R

n is called strictly positive if it is elementwise strictly positive, i.e. pi > 0
for i = 1, . . . , n. Two n × n matrices A and B are called structurally equal if the
following is fulfilled: Ai j �= 0 if and only if Bi j �= 0 for i, j = 1, . . . , n. (Therefore,
two structurally equal Kirchhoff matrices encode the same unweighted reaction graph
structure.)

It can be seen that Eq. (11) itself is a nonlinear constraint if both Ak and b are
unknowns. In order to formulate it as set of linear constraints, we can introduce a
scaled Kirchhoff matrix Ãk as follows:

[ Ãk]i, j = [Ak]i, j · b j , i, j,= 1, . . . ,m (13)

Now, Ak corresponds to a weakly reversible CRN if and only if 1(m) = [1 1 . . . 1]T ∈
R

m is an element of ker( Ãk). Moreover, it is trivial that Ãk is weakly reversible if and
only if the original Kirchhoff matrix Ak is also a weakly reversible one. Based on these
facts, the linear constraint set for weak reversibility can be formulated as follows:

m∑

i=1

[ Ãk]i, j = 0, j = 1, . . . ,m

m∑

i=1

[ Ãk] j,i = 0, j = 1, . . . ,m

[ Ãk]i, j ≥ 0, i, j = 1, . . . ,m, i �= j,

(14)

where Ak and Ãk are structurally equal.

3 Known methods for computing weakly reversible CRN structures with
optimization

In this section we will shortly review two different existing MILP-based methods to
find dynamically equivalent weakly reversible realizations of a CRN.

3.1 One-step MILP procedure to compute weakly reversible realizations with
additional preferred structural properties

First, we briefly recall the part ensuring the structural equality of Ak and Ãk of the
algorithm presented in [16]. In that paper, a set of boolean decision variables are
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introduced and used as follows:

[Ak]i, j > ε ↔ [ Ã]i, j > ε, i, j = 1, . . . ,m, i �= j, (15)

where ↔ means the ‘if and only if’ relation from classical binary logic and ε is a small
fixed positive threshold value to distinguish between practically zero and nonzero edge
weights in the reaction network. This logical condition can be expressed in the form
of equivalent linear constraints (for the general framework, see e.g. [23]):

0 ≤ [Ak]i, j − εδi, j , i, j = 1, . . . ,m, i �= j,

0 ≤ −[Ak]i, j + U B · δi, j , i, j = 1, . . . ,m, i �= j.

0 ≤ [ Ãk]i, j − εδi, j , i, j = 1, . . . ,m, i �= j

0 ≤ −[ Ãk]i, j + U B · δi, j , i, j = 1, . . . ,m, i �= j, (16)

where δi, j , i, j = 1, . . . ,m, i �= j are boolean decision variables and U B is the
upper bound for the elements of Ak and Ãk . Due to the introduction of the δ variables,
the resulting problem could be solved in the framework of MILP, making the handling
of larger networks difficult. On the other hand, these boolean variables can be used to
keep track of the presence of individual reactions, and by minimizing or maximizing
the sum

∑m
i, j=1 δi, j , a sparse or dense realization (containing the maximal or minimal

number of reactions, respectively) can be obtained [6].

3.2 Graph-theory inspired, iterative procedure to find dense weakly reversible
realizations

In [9] a completely different, graph-theory motivated method is presented (only for
the case of dynamical equivalence) which leads to an iterative MILP-based algo-
rithm. The algorithm requires Y and M as inputs, and computes an initial dense
realization for them. Afterwards, it determines all the edges in the network that con-
nect different strong components. In the next step, by solving an MILP problem a
valid dense realization is determined without these edges (if it exists). These steps
are repeated until the reaction graph of the resulting CRN is found to be weakly
reversible. The algorithm ends with failure if there does not exist any dynamically
equivalent realization that does not contain the directed edges to be excluded. In the
original publication, an MILP problem is solved in each iteration step. Fortunately,
as it is described in [10], the MILP problem for the computation of dense reaction
structures can be safely replaced with a purely LP-based algorithm. This enables us
to significantly speed up the solution process of the original method published in [9].
Therefore, we implemented and used the LP-based modified version of this graph-
theory inspired algorithm for the present paper to compare its performance to our
new methods. This algorithm will be shortly called the graph-based method in the
paper.
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4 New results on the computation of weakly reversible CRN structures

In this section, we first present a theoretical result, then two new algorithms are intro-
duced to compute weakly reversible realizations of CRNs. The first method can be
applied to compute dynamically equivalent CRNs, while the second one can be used
in the linearly conjugate case as well.

4.1 The dense weakly reversible realization forms a super-structure for a fixed
complex set

It was shown in [6] that the dense realization is a unique superstructure containing all
mathematically possible reactions, i.e for a given complex set, it contains all possible
other realization structures as sub-graphs of the dense one. In the following, we will
prove that a dense and weakly reversible realization contains all possible weakly
reversible realizations if the complex set is fixed.

Theorem 1 Consider a kinetic system � : ẋ = M · ψ(x). Suppose that (Y, Ak) is a
weakly reversible dynamically equivalent realization of � that contains the maximal
number of nonzero elements in Ak. Then, for any weakly reversible Kirchhoff matrix
A′

k for which Y · Ak = Y · A′
k the following holds: [A′

k]i, j > 0 implies [Ak]i, j > 0
for any i �= j .

Proof (by contradiction) Consider a weakly reversible Kirchhoff matrix A′
k for which

Y · Ak = Y · A′
k . Suppose that there exists 1 ≤ i, j ≤ m, i �= j for which [A′

k]i, j > 0,
but [Ak]i, j = 0. Let us define the matrix Ãk as

Ãk = Ak + A′
k

2
(17)

Clearly, Y · Ak = Y · Ãk , and [ Ãk]i, j > 0. It follows from the weak reversibility of Ak

that there exists a strictly positive vector p ∈ R
m such that Ak ·p = 0. Similarly, there

exists a strictly positive vector p′ in the kernel of A′
k , too. Let us define the following

scaled Kirchhoff matrices: Āk = Ak · diag(p), Ā′
k = A′

k · diag(p′). Then Āk and Ā′
k

are Kirchhoff, and they are structurally equal to Ak and A′
k , respectively. Moreover,

Āk · 1(m) = Ā′
k · 1(m) = 0, where 1(m) denotes the m dimensional column vector

composed of ones. Let Âk = Āk + Ā′
k . Then Âk is a weakly reversible Kirchhoff

matrix, since Âk · 1(m) = ( Āk + Ā′
k) · 1(m) = 0. It is also clear that Âk is structurally

equal to Ãk . This implies that Ãk is a weakly reversible Kirchhoff matrix containing
more non-zero off-diagonal elements than Ak , which is a contradiction. 	


To briefly illustrate the above theorem, consider a kinetic system� : ẋ = M ·ψ(x)
characterized by the following matrices:

Y =
[

1 2 1 1
2 1 3 1

]
, M =

[
0 −2 0 2
−3 2 −2 0

]
(18)
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Fig. 1 Possible dynamically equivalent weakly reversible reaction graph structures of the kinetic sys-

tem (18). (a) Dense weakly reversible structure defined by A(1)k . (b) Weakly reversible structure of a

complex balanced realization given by A(2)k . (c) Sparse weakly reversible structure with 5 reactions defined

by A(3)k

This kinetic system was studied before in [18] and in [9]. A possible dense weakly
reversible realization (Y, A(1)k ) of � is given by the Kirchhoff matrix:

A(1)k =

⎡

⎢⎢⎣

−3.2 1.8 0.1 0
0 −2 0 2
0.1 0.1 −1.05 0
3.1 0.1 0.95 −2

⎤

⎥⎥⎦ . (19)

On the other hand, the following Kirchhoff matrix encodes a complex balanced and
thus weakly reversible realization (Y, A(2)k ) of � (see [9]):

A(2)k =

⎡

⎢⎢⎣

−3 1.5 0 0
0 −2 0 2
0 0.25 −1 0
3 0.25 1 −2

⎤

⎥⎥⎦ . (20)

Finally, a sparse weakly reversible realization containing only 5 reactions (Y, A(3)k ) is
defined by:

A(3)k =

⎡

⎢⎢⎣

−3.2 2 2 0
0 −2 0 2
0.1 0 −2 0
3.1 0 0 −2

⎤

⎥⎥⎦ . (21)

It can be easily checked that all (Y, A(1)k ), (Y, A(2)k ) and (Y, A(3)k ) are dynamically
equivalent weakly reversible realizations of �. The reaction graph structures of the
three realizations are depicted in Fig. 1. It is clearly visible from the figure that the
unweighted reaction graphs of (Y, A(2)k ) and (Y, A(3)k ) are indeed proper subgraphs of

the unweighted reaction graph of (Y, A(1)k ).

4.2 LP-based method to compute weakly reversible, dynamically equivalent
realization

In this subsection, an LP-based method is introduced which is able to compute a
weakly reversible, dynamically equivalent realization for a given CRN. In a standard

123



J Math Chem (2014) 52:1386–1404 1395

LP problem, a linear function of the real-valued optimization variables is minimized
(or maximized) with respect to linear equality and inequality constraints. It is known
that LP problems can be solved in polynomial time. Well-known solution approaches
e.g. the simplex algorithm or interior-point methods are available in current software
tools.

Let us denote the i th column of Ak and M with zi and mi , respectively. Then (8)
can be written as

Y zi = mi , i = 1, . . . ,m (22)

It is well-known from linear algebra that all solutions for Eq. (22) can be characterized
as the sum of particular solutions and the linear combinations of the solutions of the
homogeneous system, that can be written as

zi = z(p)
i +

r∑

j=1

κi, j z
(h)
j , i = 1, . . . ,m (23)

where κi, j ∈ R, r is the nullity (i.e. kernel dimension) of Y, z(p)
i is a particular solution

for (22), and z(h)j is the j th kernel base vector of Y . Since Y and M are given, z(p)
i

and z(h)j are known for i = 1, . . . ,m and j = 1, . . . , r . Thus, the unknowns in the
problem will be the coefficients κi, j .

Recall Eq. (11), namely that a CRN is weakly reversible if and only if there is a
strictly positive vector b = [b1 . . . bm]T in the kernel of the matrix Ak . Then the
condition (11) is given by

m∑

i=1

zi bi = 0. (24)

Substituting (23) into (24) gives

m∑

i=1

z(p)
i bi +

m∑

i=1

r∑

j=1

biκi, j z
(h)
j = 0 (25)

Let us introduce the following new variables

vi, j = biκi, j , i = 1, . . . ,m, j = 1, . . . , r (26)

Using this notation, Eq. (25) reads

m∑

i=1

z(p)
i bi +

m∑

i=1

r∑

j=1

vi, j z
(h)
j = 0 (27)

that is now linear in the variables bi and vi, j .

123



1396 J Math Chem (2014) 52:1386–1404

Table 1 Steps of the method
WR-LP1 for finding weakly
reversible, dynamically
equivalent realization

Ak =WR-LP1(Y,M)

1 Ak := 0 ∈ R
m×m

2 Determine the particular and homogeneous solutions z(p)
i

for i = 1, . . .m, and z(h)j for j = 1, . . . , r from Eq. (22).

3 Check the feasibility of (25)and(28)–(29) with variables b and

vi, j as a linear programming problem with arbitrary linear

objective function.

4 If there exists a feasible solution:

5 Determine κi, j from (26).

6 Compute the values of the original variable Ak according to (23).

7 return Ak ;

8 Else

9 return 0;

We are in a lucky situation considering the sign constraints of the elements of the
original matrix Ak , since b is elementwise strictly positive (i.e. multiplying with b
does not alter the signs of the elements in Ak). Let us denote by z(p)

i, j and z(h)i, j the j th

scalar elements of the vectors z(p)
i and z(h)i , respectively. Then we can set the following

constraints:

z(p)i,k bi +
r∑

j=1

vi, j z
(h)
j,k ≥ 0, i, k = 1, . . . ,m, i �= k (28)

z(p)i,i bi +
r∑

j=1

vi, j z
(h)
j,i ≤ 0, i = 1, . . . ,m. (29)

The above method will be shortly referred to as WR-LP1 in the rest of the paper. For
convenience and easy implementation, the steps of the WR-LP1 algorithm are sum-
marized in Table 1, where the input data are Y and M , and the output is the Kirchhoff
matrix of the computed weakly reversible dynamically equivalent realization if such
exists, or 0 if the problem is infeasible.

4.3 LP-based method to compute linearly conjugate weakly reversible realizations

In this section, we are going to present a new algorithm which is related to the MILP-
based method briefly summarized in Sect. 3.1. That method is now extended to be able
to deal with linear conjugacy and is also modified to eliminate the boolean decision
variables from the model to obtain an LP-based algorithm. Let us assume that the
matrix M defined in Eq. (8) containing the monomial coefficients of a kinetic system
is given. It is known from [15] that linear conjugacy between two CRN models can
be expressed by the following constraints:
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M = T · Y · Ak (30)
m∑

i=1

[Ak]i, j = 0, j = 1, . . . ,m (31)

[Ak]i, j ≥ 0, i, j = 1, . . . ,m, i �= j, (32)

di > 0, i = 1, . . . , n, (33)

where the unknowns are the parameters of the positive diagonal transformation
T = diag(d), and the off-diagonal elements of the Kirchhoff matrix Ak . The actual
Kirchhoff matrix A′

k of the CRN realization that is linearly conjugate to the original
kinetic system (9) defined by M and Y , can be computed from Ak and d using the
following scaling (see [15] for the details):

A′
k = Ak · diag(ψ(d)). (34)

Additionally, we use the auxiliary variable Ãk defined in (13) and constraints (14) to
ensure weak reversibility, where again, Ak and Ãk are structurally equal.

Using the fact that the off-diagonal elements of Kirchhoff matrices are non-negative,
we can enforce the structural equality of Ak and Ãk in our improved method using linear
constraints without integer variables. Similarly to the solution in [16] [the constraints
of which were summarized in Eqs. (15)–(16)], we consider an off-diagonal element
of a Kirchhoff matrix practically nonzero if it is greater than an appropriately chosen
small positive value pl such that 0 < pl � 1. (This means that off-diagonal elements
less than pl are truncated to zero in Ak and Ãk .) Moreover, the following upper bounds
are assumed for the off-diagonal elements of Ak and Ãk with pu = 1

pl
.

[Ak]i, j < pu and [ Ãk]i, j < pu for i, j = 1, . . . ,m, i �= j. (35)

Now we set the following constraints for ensuring the structural equality of Ak and
A′

k .

[Ak]i, j − p2
u · [ Ãk]i, j ≤ 0, i, j = 1, . . . ,m, i �= j (36)

−[Ak]i, j + p2
l · [ Ãk]i, j ≤ 0, i, j = 1, . . . ,m, i �= j (37)

Let us examine the correctness of the constraints (36)–(37). For this, we have to take
into account the upper bounds in (35), too.

1. If [Ak]i, j > pl and [ Ãk]i, j > pl then one can see that [Ak]i, j < p2
u · [ Ãk]i, j so

Eq. (36) is fulfilled. Moreover, because [Ak]i, j > p2
l · [ Ãk]i, j , Eq. (37) holds, too.

2. If [Ak]i, j = 0 and [ Ãk]i, j = 0 then Eqs. (36) and (37) are trivially fulfilled.
3. If [Ak]i, j > pl and [ Ãk]i, j = 0 then Eq. (36) is violated.
4. Similarly, if [Ak]i, j = 0 and [ Ãk]i, j > pl then Eq. (37) is violated.

In summary, the linear constraint set containing only continuous variables to find
weakly reversible linearly conjugate CRN realizations is the following: (30) stands
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for the linear conjugacy, Eqs. (31)–(32) encode the Kirchhoff property of Ak , and
(33) ensures the positivity of the linear conjugacy transformation T . Constraints (14)
introduce a scaled auxiliary Kirchhoff matrix Ãk that is weakly reversible, and finally,
Eqs. (36)–(37) ensure the structural equality of Ak and Ãk . The input data of the method
are Y and M , and the decision variables are the matrix elements [Ak]i, j , [ Ãk]i, j for
i, j = 1, . . . ,m, i �= j , and the scaling factors dk for k = 1, . . . , n. Clearly, the
feasibility of the constraints can be checked within the framework of LP. In this case,
the objective function can be utilized to prescribe certain additional properties of the
solution (if it exists). For example, to obtain a sparse weakly reversible realization
of the studied kinetic system, the L1-norm of the elements of Ak can be minimized,
provided that the number of complexes in the CRN is large enough [10,24]. Later on,
we will refer to this method as the WR-LP2 algorithm.

5 Computation results

The capabilities of the algorithms presented in the previous section is illustrated
through three examples. In the first one a dynamically equivalent weakly reversible
realization does not exist but interestingly, a linearly conjugate, weakly reversible
one does exist, and both cases are handled correctly by the applied computational
method. The second example highlight a case where the algorithms are able to show
the non-existence of a dynamically equivalent weakly reversible realization of a given
CRN, as it is previously expected. Finally, the algorithms are compared in terms of
computational time. All the computations were performed on a 2.6 GHz PC in MAT-
LAB environment, using the CRNreals [25] and YALMIP [26] toolboxes. The CLP
solver [27] was used to solve the LP problems, while the GLPK solver [28] was used
to compare the results with the previously published MILP-based method [15]. The
threshold to discriminate between zero and nonzero rate coefficients was set to 10−3.

Example 1 In this example which originally appeared in [16], a reaction network is
shown which doesn’t have a dynamically equivalent weakly reversible realization, but
it has a linearly conjugate weakly reversible one. The network is characterized by

Y =
⎡

⎣
1 2 2 2 1 2 1 2 1 1
2 2 1 0 0 0 0 0 1 0
0 0 0 0 0 1 2 2 2 1

⎤

⎦

and the Kirchhoff matrix Ak containing the following non-zero off-diagonal ele-
ments: [Ak]2,1 = 1, [Ak]4,2 = 0.5, [Ak]5,4 = 1.5, [Ak]7,4 = 0.5, [Ak]1,7 =
0.5, [Ak]4,7 = 1. One can see that this (Y, Ak) realization is non-reversible.

Firstly, while applying the presented WR-LP2 algorithm on the above described
system, we have fixed the T matrix as an identity. This means that instead of looking
for linearly conjugate realizations during the search, only the dynamically equivalent
realizations were considered. The algorithm found the constraint set infeasible as
expected.

Then, by relaxing the fixed value of the matrix T we enabled the search for lin-
early conjugate realizations, too. Now the algorithm succeeded, determining a lin-
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early conjugate weakly reversible realization with the following non-zero off-diagonal
elements in the matrix A(2)k : [A(2)k ]2,1 = 0.001, [A(2)k ]4,2 = 0.005, [A(2)k ]7,4 =
0.002, [A(2)k ]1,7 = 0.005, [A(2)k ]4,7 = 0.001 and linear conjugacy matrix T =
diag([ 1

0.001 ,
1

0.001 ,
1

0.004 ]). For these values, the equation for linear conjugacy Y · Ak =
T · Y · A(2)k holds [see Eq. (30)].

Example 2 In [2], the classical three-dimensional kinetic Lorenz system that was
described and studied in a CRN framework. With a proper parameter set the system
is able to show chaotic behaviour. Due to the complex dynamics, we expect that this
system will have neither a dynamically equivalent nor a linearly conjugate weakly
reversible realization. In the following, it is shown that our algorithm actually returns
this result with the given complex set and parameters.

By applying proper coordinates-shifting and an appropriate time-scaling (see [2]
for the computation details), this system can be transformed to a kinetic form. The
emerging kinetic ODEs are

ẋ1 = σ x1x2
2 x3 − σ x2

1 x2x3 + σ(w1 − w2)x1x2x3

ẋ2 = (ρ + c3)x
2
1 x2x3 + (w2 − w1ρ − w1w3)x1x2x3 − x1x2

2 x3

−x2
1 x2x2

3 + w1x1x2x2
3

ẋ3 = x2
1 x2

2 x3 − w2x2
1 x2x3 − w1x1x2

2 x3 + (w1w2 + βw3)x1x2x3 − βx1x2 x̄2
3 (38)

The system described by Eq. (38) can show chaotic behaviour (with an attractor
that is very similar to the attractor of the classical non-kinetic Lorenz system) if
the following parameter set is used [2]: σ = 10, ρ = 28, β = 8/3, and W =
[w1 w2 w3] = [24 25 26].

The complex composition matrix of the system is given by:

Y (l) =
⎡

⎣
1 0 2 1 2 1 1 1 2 2 2 1 2
1 1 1 2 2 0 1 2 1 0 1 2 2
1 1 1 1 1 1 2 2 2 2 0 0 2

⎤

⎦ ,

while the non-zero off-diagonal elements of the network’s Kirchhoff matrix A(l)k are
the following:

[A(l)k ]2,1 =679.3324, [A(l)k ]6,1 = 1940.3342, [A(l)k ]13,1 =669.3342, [A(l)k ]11,3 = 59, [A(l)k ]12,3 =10,

[A(l)k ]13,3 =44, [A(l)k ]10,4 =0.5, [A(l)k ]12,4 =34, [A(l)k ]13,4 =9.5, [A(l)k ]13,5 =1, [A(l)k ]8,7 =22.6666,

[A(l)k ]12,7 = 1.3334, [A(l)k ]10,9 = 1.

Now the monomial coefficient matrix can be written as

M =Y (l) · A(l)k =
⎡

⎣
−10 0 −10 10 0 0 1 0 0 0 0 0 0

−1271 0 54 −1 0 0 24 0 −1 0 0 0 0
669.3342 0 −25 −24 1 0 −2.6667 0 0 0 0 0 0

⎤

⎦ .

The WR-LP2 algorithm found the problem infeasible during the search for dynami-
cally equivalent and linearly conjugate weakly reversible realization. This coincides
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with the results of [2], where several thousand dynamically equivalent sparse real-
izations were computed with an efficient method, but none of them was weakly
reversible.

Example 3 In this example containing several randomly generated CRNs, the results
of the performance comparison of the presented algorithms are summarized while
dealing with large scale networks. As it was shown, all three algorithms, namely the
graph-based method, the WR-LP1 and the WR-LP2 methods (presented in Sects. 3.2,
4.2 and 4.3, respectively) are purely LP-based algorithms. To be able to compare the
three methods, only dynamically equivalent realizations were searched for.

All the algorithms were tested on a set of randomly generated CRNs. All the net-
works were built up from 10 species but contained different number of complexes:
scenarios with 9, 30, 56, 90 complexes were set up, respectively. The methodology
of generating the random kinetic systems was the following. Firstly, a kinetic polyno-
mial system of the form (9) was generated where the elements of M were uniformly
distributed random real numbers from the interval [10, 110]. The exponents of the
monomials ofψ were chosen as uniformly distributed random integers from the inter-
val [0, 5]. This kinetic polynomial system was converted to a so-called canonical
CRN representation (Y, Ak) as it is described in [20]. Then the obtained random CRN
was extended with additional directed edges (if needed) to ensure that the resulting
reaction graph is weakly reversible. This step was solved as an unweighted graph
augmentation task [29,30]. The Kirchhoff matrix of the augmented weakly reversible
network is denoted by A′

k . The inputs for the realization computation algorithms were
the matrices Y and M ′ = Y · A′

k .
The evaluation of the effectiveness of the algorithms—i.e. how the solution time is

changing as the size of the computational task is growing—can be found in Table 2.
The columns of the table show the size of the matrix Ak (i.e. the number of complexes
in the network) which basically determines the number of variables and constraints
(depending also on the individual method). For each problem size, 10 different random
CRNs were tested. In some cases the solver was unable to solve the problem in the
given time limit (300 s), these were considered as unsuccessful solution attempts. For
any method, no incorrect solutions were obtained. Only the successful solutions were
taken into account during the calculation of the average solution times. One can find
the number of successful solutions (out of the original 10 problems for each problem
size) in the corresponding rows of Table 2. In the remaining rows, the averaged solution
times and the sizes of the generated LPs can be found for each algorithm.

One can see that despite the fact that both the WR-LP1 and the WR-LP2 algorithms
solve a single LP problem, there is a significant difference between the solution times.
This is caused by the different problem structures generated by the two algorithms.
Although the number of variables and constraints is higher in the case of the WR-LP2
algorithm, the method generates a clear and sparse structure both for the equality
and inequality constraints as it can be seen in Fig. 2, while WR-LP1 builds a nearly
full coefficient matrix to describe the equality constraints (see Fig. 3). This fact has
a serious effect on the computational time of the solution of the corresponding LP
problems causing WR-LP1 not to terminate the computation within the predefined
time limit in the case of larger networks.
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Table 2 Comparison of the
presented algorithms in terms of
computational time while
dealing with CRNs having
different sizes

WR-LP2 algorithm outperforms
all the other methods. All the
compared methods are based on
LPs as the constrained dense
search is also implemented with
LP for the graph-based method.
The size of the generated LPs
also appear in the table
* The graph-based method
calculates m2 LPs with the given
size

Network size (m) 9 30 56 90

Graph-based

Time (s) 0.04 0.77 4.26 18.98

Success 10/10 10/10 10/10 10/10

# of optim. vars* 14 37 65 101

# of eq. constr.* 4 6 8 10

# of ineq. constr.* 14 37 65 101

WR-LP1

Time (s) 0.001 2.04 5.98 –

Success 10/10 10/10 4/10 0/10

# of optim. vars 63 780 2,800 7,380

# of eq. constr. 9 30 56 90

# of ineq. constr. 81 900 3,136 8,100

WR-LP2

Time (s) 0.003 0.23 1.62 11.28

Success 10/10 10/10 10/10 10/10

# of optim. vars 162 1,800 6,272 16,200

# of eq. constr. 45 210 504 990

# of ineq. constr. 324 3,600 12,544 32,400

Fig. 2 Structure of the constraint set in case of the WR-LP2 algorithm. Rows and columns represent
constraints and variables, respectively. The original CRN contains 2 species and 9 complexes. Non-zero
elements of the matrices are marked. As one can note, the algorithm generates sparse constraint matrices
with clear structure. (a) Structure of the matrix describing the equality constraints in the LP problem. The
size of the matrix is 45 × 162. (b) Structure of the matrix describing the inequality constraints in the LP
problem. The size of the matrix is 324 × 162
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Fig. 3 Structure of the constraint set in case of the WR-LP1 algorithm. Rows and columns represent
constraints and variables, respectively. The original CRN contains 2 species and 9 complexes. Non-zero
elements of the matrices are marked. It can be seen that the equality constraints formulate a nearly full
matrix. (a) Structure of the matrix describing the equality constraints in the LP problem. The size of the
matrix is 9 × 63. (b) Structure of the matrix describing the inequality constraints in the LP problem. The
size of the matrix is 81 × 63

For further comparison, we mention that the MILP-based method described in [15]
produced the following results. In the case of the random networks with 9 complexes,
we obtained 4 successful computation attempts (i.e. a correct solution within 300 s)
out of 10 attempts with an average solution time of 0.28 s. For networks containing
30 complexes, the method gave only 1 successful solution attempt out of 10 with a
solution time of 3.2 s. For CRNs containing more than 30 complexes, the method did
not give any correct solution within the given time limit.

6 Conclusion

We have developed and analyzed LP based methods to compute dynamically equiva-
lent weakly reversible realizations of kinetic systems. Similarly to a result published
in [8], it was shown that the dense dynamically equivalent weakly reversible realiza-
tion structure of a kinetic system contains all other possible dynamically equivalent
weakly reversible structures as proper subgraphs if the complex set is fixed. Based on
the analysis of the properties of kinetic systems, a previously published graph-theory-
based method was re-implemented without integer variables. In addition, two new
computation methods were also proposed, having polynomial time complexity, too.

The implemented methods were tested on examples taken from the literature, and
then they were compared from the point of view of computational performance on
reaction networks of increasing size. The numerical tests showed that the LP-based
methods solve the problems correctly, while avoiding the complexity issue which
emerges during the solution of the former MILP-based problems. It was also shown
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that the structure of the constraint set in the LP problems has serious impact on the
solution time of the problem. It clearly turned out that one method, called WR-LP2
(the only method that is able to handle linear conjugacy as well), outperforms the other
LP-based methods in terms of computational time.

As a direction of possible future work, the proposed new methods can be developed
further to incorporate additional requirements into the search for alternative CRN
structures. These requirements can be any structural or parametrical properties which
can be formulated as linear constraints. An interesting direction would be the inclusion
of certain conservation laws into the search criteria.
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